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Abstract Various sorts of isomer enumeration problems are addressed in the con-
text of polycarboranes, with special illustrative focus on the case of dicarboranes, for
which then various numerical results are given. A systematic and general Pólya-theo-
retic methodology is used to make the computations, including some new techniques
being applicable to a wide range of nano-structures built from a framework of like
local subunits.

Keywords Isomer enumerations · Structural isomers · Stereoisomers · Dicarborane
isomers · Polycarboranes

1 Prelude

Carboranes and more general polycarboranes are of interest [1–4] as fundamental
nano-structures for use in the construction of various nano-devices. The carborane
unit is especially attractive as a fairly well understood building block such that each
icosahedral carborane unit offers a multiplicity of bonding directrixes for potential
neighboring carborane units—so that thereby a wide variety of nano-structures are
possible. But also given a nano-structure one might be interested in the variety of
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possible patterns of substitution on it, say so as to “tune” the properties of the under-
lying structures. Enumerations and further global characterizations of such different
patterns of substitution then form the general problems here addressed.

For a concrete illustration consider two carboranes [CcB12−cH12]c−2 in the shape
of icosahedra where there are c = 1 or 2 carbon atoms. Then one H atom bonded to a
C atom may be deleted from each of these two icosahedra, whereafter the two radicals
are joined together to obtain a bridged dicarborane species

[(CaB12−aH11) − (CbB12−bH11)]a+b−4

when a or b = 2, then the second carbon atom in the carborane can be connected
ortho, meta, or para to the bridge connection. Figure 1 shows a borane dimer, with
a = b = 1; there positions 2, 11, and 12 are ortho, meta, and para to position 1
(in either of the borane units). One can now seek isomer counts for substitution of
H atoms by X , where X might for instance represent F or CH3. We presume that
rotation about the central bridge bond is allowed. This does not necessarily assume
that internal rotation is free, but rather that it takes place on a sufficiently short time
scale. But still there are different possible types of isomers to consider: structomers,
diastereomers, and stereomers. Each type of isomer is distinguished by suitable fea-
tures. The structomers entail just the characterization of the isomers in terms of the
parent skeletal graph—here involving bonds between the neighbor vertices in each of
the molecular icosahedra, as well as the bridge bond (or edge), and perhaps the bonds
from each X to the corresponding B or C atom of the icosahedra—these structomers
are more often called “stuctural isomers” or “constitutional isomers”.

Here just such isomer counts of a few types are made, by way of Pólya’s theory
[5–8] of enumeration under group action, using the so-called “cycle index”. This is
used to enumerate different types of isomers (structural isomers, diastereomers, and
stereoisomers). And as is prototypical here, when the symmetry group of the underly-
ing skeleton (on which substitutions are made) is comprised from a local part leaving
units fixed (here carborane units) times a global part interchanging different units, a
general theory is here formulated to facilitate the requisite constructions. This then
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Fig. 1 Borane dimer, showing just the half of the dimer closer to the viewer. Carbon atoms sit preferentially
at the bridge positions 1
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extends some earlier1 [9,10] similar theory for the special subcase when this symmetry
group turns out to be a “wreath product”. This yields what might be termed different
types of isomer “sub-counts”.

2 Isomer characterization

For the a = b = 1 case, the permutation symmetry groups associated with each
of these types of isomers (structomer, diastereomer, or stereomer) may be explic-
itly identified. We label the two different component icosahedra [CB11H12]− of the
dicarborane by a and b, and also identify separate permutation groups associated to
corresponding icosahedra by these subscripts a and b. Thus we have fivefold rota-
tion groups for each icosahedron C5a and C5b. But also (for a = b) there are local
reflection groups Cva ≡ {I, σa} and Cvb ≡ {I, σb} involving a reflections σa and σb,
reflecting in a plane through a bridge atom and the atom opposite (i.e., para to it) in the
single icosahedron a or b. In addition, there is twofold rotation group C′

2 interchanging
polyhedra, and there is Cvab ≡ {I, σaσb} which involves the simultaneous reflection
of both polyhedra (but does not include the reflection of one without the reflection of
the other). Then the groups associated to each type of isomer count are:

• stereomer: (C5aC5b)C′
2

• diastereomer: (C5aC5b)CvabC′
2

• structomer: (C5vaC5vb)C′
2 (where C5v = C5Cv)

That is, two conformations are to be counted as equivalent under the group corre-
sponding to the given type of isomer—and the enumerations for a given number n

of substituents X are just for the number of equivalence classes for all the

(
22
n

)

different possible conformations. With these various groups represented in terms of
permutations on the possible substitution sites, the isomer enumeration is conveniently
carried out via Pólya’s theory [5–8]—using so called “cycle indices”.

For the case of a = b = 2 where the second C in each icosahedron is placed para to
the bridge C atom, the groups are designated in the same manner. The isomer counts
then are the same as those resulting for the a = b = 1 case.

For the case a = 1 and b = 2 with the second C in the second icosahedron in the
para position, the groups are only slightly modified, just with the C′

2 factor missing
from each of these groups.

The remaining cases involve at least one icosahedron with a C atom off of what
otherwise would be a fivefold axis. That is, for these cases there is an icosahedron
cage with a C-atom either ortho or meta to a bridge C atom. If there is just one such
off-center C atom, say the b icosahedron, then the groups are:

• stereomer: C5a

• diastereomer: (C5a)Cvab

• structomer: C5vaCvb

1 See Part 25 of Pólya in ref. 5, or pages 99, 119–121, 136 of Pólya & Read in ref. 6, or page 98ff of Harary
& Palmer in ref. 8.
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If a = b = 2 and both icosahedra have both icosahedra with off-axis C atoms, there is
a possibility that both are the same type (both o, or both m), in which case the relevant
groups are:

• stereomer: C′
2

• diastereomer: C′
2Cvab

• structomer: CvaCvbC′
2

But (still with m = n = 2) if they are different types (ortho and meta), then

• stereomer: {I }
• diastereomer: Cvab

• structomer: CvaCvb

Again in all these cases the Pólya theory is applicable.

3 Methodology for counting isomers

To solve any one of these isomer counting problems one needs the so-called “cycle
index” for the relevant group G of permutations. In general a permutation P on a set
of N labels (here identifying the substitution sits) is a product of a number |P|l of
disjoint cycles of different lengths l = 1 up to N . Evidently then

∑N
c=1 |P|c = N , and

for each P ∈ G we further introduce products
∏N

l=1 s|P|l
l with the sl being variables,

and we might even further let χλ denote some character of G. Then the χλ - cycle
index for a subset S ⊆ G is

Zλ(S) ≡ 1

|S|
∈S∑
P

χλ(P) ·
N∏

l=1

s|P|l
l (1)

when S = G (and perhaps χλ is irreducible), this reduces to Balasubramanian’s χλ-
cycle index [11], and if further χλ is taken to be the identity irreducible representation,
then this further specializes to Pólya’s [5,6] standard cycle index, which then is simply
denoted Z(G). Pólya’s theorem then says that if one takes sl ≡ 1+xl , Z(G) becomes
a polynomial (in x) for which the coefficient of xn is the number of n-fold substituted
isomers (for our single substituent X beyond H) as mediated by the group G.

In the case of polycarboranes the whole group G can be built up from pieces associ-
ated with the component icosahedral units, just a and b for dicarboranes. In particular
we utilize

Z(C5) = 1

5
{s11

1 + 4s1s2
5 }

Z(C5σ) = 1

5
{5s3

1s4
2 } = s3

1s4
2 (2)

Z(σ ) = s3
1s4

2

The utilization of these simple single-unit cycle indices to determine the desired cycle
indices for various multi-unit species is described in a later section.
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Numerical results for the [CB11H11]2−
2 dicarborane case are given in Table 1 show-

ing the results for each of the 3 types of isomers contemplated, as well as the counts
of diastereomers which correspond either to enantiomeric pairs or individual achiral
structures. In Table 2 just the structomer counts for the remaining types of dicarboranes
are given, with o, m, p labelling ortho, meta, and para units (with c = 2 carbons),
while ∅ labels units with just a single C atom (at the bridgehead). These tables report
results just for n = 0 → 11 substituents (all of the same kind X ), as it is understood
that the isomer counts at n and 22 − n are the same (as is evident upon interchange of
H and X ).

4 Further enumerative characterization

In addition one may consider the respective numbers α and χ of achiral and chiral
diastereomers. Given the numbers #ster and #diast of stereomer and diastereomer counts
(at a given n), we have

Table 1 Isomer counts for (C5vaC5vb)C′
2—symmetric skeletons ∅− ∅ or p − p

n ∅− ∅ and p − p ∅− p ∅− o and ∅− m m − m and o − o o − m

0 1 1 1 1 1

1 3 6 10 7 14

2 15 27 61 59 111

3 50 100 268 306 612

4 156 303 923 1,293 2,555

5 391 782 2,630 4,219 8,438

6 886 1,749 6,347 11,335 22,581

7 1,704 3,408 13,064 24,856 49,712

8 2,908 5,774 22,940 45,572 90,970

9 4,226 8,452 34,320 69,694 139,388

10 5,350 10,642 47,312 89,980 179,718

11 5,748 11,496 47,384 97,772 195,544

12 5,350 10,642 43,712 89,980 179,718

13 4,226 8,452 34,320 69,694 139,388

14 2,908 5,774 22,940 45,572 90,970

15 1,704 3,408 13,064 24,856 49,712

16 886 1,749 6,347 11,335 22,581

17 391 782 2,630 4,219 8,438

18 156 303 923 1,293 2,555

19 50 100 268 306 612

20 15 27 61 59 111

21 3 6 10 7 14

22 1 1 1 1 1

Sum 37,128 73,984 295,936 592,416 1,183,744

123



J Math Chem (2012) 50:2012–2022 2017

Table 2 Structomer counts for various types of dicarboranes

n #ster #diast #struc χ α χ ′ α′

0 1 1 1 0 1 0 1

1 3 3 3 0 3 0 3

2 17 15 15 2 13 0 15

3 66 50 50 16 34 0 50

4 231 158 156 73 85 2 154

5 655 411 391 244 167 20 371

6 1,663 984 886 679 305 98 788

7 3,560 2,016 1,704 1,544 472 312 1,392

8 6,578 3,628 2,908 2,950 678 720 2,188

9 10,142 5,498 4,226 4,644 854 1,272 2,954

10 13,246 7,122 5,350 6,124 998 1,772 3,578

11 14,412 7,724 5,748 6,688 1,036 1,976 3,772

12 13,246 7,122 5,350 6,124 998 1,772 3,578

13 10,142 5,498 4,226 4,644 854 1,272 2,954

14 6,578 3,628 2,908 2,950 678 720 2,188

15 3,560 2,016 1,704 1,544 472 312 1,392

16 1,663 984 886 679 305 98 788

17 655 411 391 244 167 20 371

18 231 158 156 73 85 2 154

19 66 50 50 16 34 0 50

20 17 15 15 2 13 0 15

21 3 3 3 0 3 0 3

22 1 1 1 0 1 0 1

Sum 86,736 47,496 37,128 39,240 8,256 10,368 26,760

#ster = α+2χ and #diast = α +χ (3)

(as each member of an enantiomeric pair is counted but once for a diastereomer). Thus

α = 2#diast − #ster and χ = #ster − #diast (4)

We recall that scalar properties (boiling and melting points, heats of formation
and vaporization, densities, specific heats, magnetic susceptibilities, polarizabilities,
solubilities in achiral solvents, etc) are the same for the two members of an enantio-
meric pair of stereomers, so that #diast counts the number of different sets of scalar
properties achievable either for different pure stereomers or for the different racemates
(as so often arise with asymmetric syntheses)—though the racemates have many scalar
properties different than the corresponding pure stereomers.

It is readily seen that these results may be re-expressed in terms of our generalized
cycle indexes. We denote the stereomer group by Gstereo and the diastereomer group
by Gdiast = Gstereo ⊕ σabGstereo, where σab is our overall reflection. Also we let
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λ = anti denote the antisymmetric irreducible representation which has character
= +1 on Gstereo and = −1 on the coset σabGstereo. Then Zanti(Gdiast) is the counting
polynomial for enantiomeric pairs, and Z(σabGstereo) is the counting polynomial for
achiral species.

A similar consideration may be made for the relation between structomers and
diastereomers. That is, if we imagine that a scalar property depends purely on the
graphical structure of a molecule, then (for our dicarboranes) there will be pairs of
diastereomers having the same values for such scalar properties—and each such pair
will be grouped together in a single structomer. Various gas phase scalar properties
might reasonably be imagined to closely manifest such a diastereomeric independence,
but in condensed phases the scalar properties should depend some on the geometric
characteristics so as to distinguish diastereomers corresponding to the same structom-
er. We might denote the number of such pairs as χ ′ and the number of structomers
corresponding to a single diastereomer by α′. Then (for our dicarboranes)

#diast = α ′ + 2χ ′ and #struc = α ′ + χ ′ (5)

and

α ′ = 2#diast − #ster and χ ′ = #ster − #diast (6)

which in close correspondence with the relations between stereomers and diaste-
reomers. It may be noted that with polycarboranes with ≥ 3 carborane units, one
structomer may correspond to a greater number of diastereomers. Again generating
polynomials Zanti(Gstruct) and Z(σaGdiast) apply for χ ′- and α′-counting.

Results for the a = b = 1 dicarborane (and also the a = b = 2 para-para carbo-
rane) are given in Table 1. Similar results are readily obtainable for all the other cases
of Table 2.

Another type of isomer sub-count entails the enumeration of the numbers of isomers
which have particular numbers of substituents X in each of the different carborane
units. For the illustrative dicarborane case we thus seek isomer counts #m,n with m
and n substituents in each carborane unit. There of course is a problem as to whether
the two units are of the same type (o, m, p, or ∅). But again all this is treatable
via a modest extension of the standard Pólya theory, as explained in the next section.
Example numerical results are given in Table 3 for the a = b = 1 (or ∅ − ∅ case).

Finally the Pólya theory (and associated cycle indices) apply even if there are
more than one substituent to replace H. One merely introduces a variable tX for each
type of substituent X , and takes sm = 1 + ∑

X tm
X , whence the overall coefficient of∏

X tm X
X in Z gives the number of isomers with m X substituents of type X . That is, this

just entails further manipulation of a now more elaborate multi-variable polynomial.
A super-count #total(msub) of all these isomers with any number of substitutions with
msub possible types of substituents taking place is readily obtainable on taking all these
tX = 1. For instance, for the diastereomeric case, these net numbers of isomers are:

#total(msub) ≈ 3.7 × 104, 1.77 × 108, 9.1 × 1010, 1.21 × 1013 (7)
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for #total(msub) = 2, 3, 4, 5. With many different types of substituents, one natu-
rally anticipates that the remnant symmetry of the substituted species more typically
is naught but the identity group. Were this to be the case then #total(msub) should
approach (msub + 1)22/ |G|, again as we expect for larger values of msubs. Indeed for
the present diastereomer case (with G = Gdiast of order 200), we have

(msub + 1)22/|Gdiast| ≈ 2.1 × 104, 1.57 × 108, 8.0 × 1010, 1.19 × 1013 (8)

Evidently one need not go to overly large msubs to obtain a couple digits of accuracy.

The analogous expression

(
22
n

)
· mn

subs which one might imagine when the total

number of substituents beyond H is just n cannot of course be expected to work well
when n is small.

5 Methodology for general polycarboranes

Much as the counts for our dicarboranes could be built up in terms of each compo-
nent icosahedral group, there are rather similar ideas applicable to the polycarborane
case. That is, it might be imagined that we have a whole sequence of carborane units,
which fall into classes γ which have the bonds to other carborane groups in similar
positions. That is, if a carborane unit is removed from the whole nano-structure while
marking the atoms where the bridge bonds to other units occur, then the members of
this class are to be isomorphic. Evidently whatever molecular permutation group we
have to designate our isomers can only interchange site labels between carborane units
belonging to the same class, allowing that there can be component permutations which
permute the labels around within individual units. Then one can generally present our
isomer group in the form

G =
(
∪
x

G0 Px

)
· T (9)

where: G0 is a product over groups each of which permutes labels within an indi-
vidual unit; the union is disjoint; the Px permute the labels within units but gener-
ally in a correlated way; the parenthetic part forms a group (leaving indices within
carborane units); and T is a group based on the interchanges of the different units.
When the set of Px form a group P (as often occurs here), G is [7] the “semi-direct
product” of G0P and T, or of G0 and PT—and yet further G0P is the semi-direct
product of G0 and P. But for our purposes it is of value to keep separate account
of G0 and P (and T) as they each manifest different sorts of actions on our set of
substitution sites. As an example for the a = b = 1 dicarborane case of diastereo-
mers: G = (C5aC5b)CvabC′

2, G0 = (C5aC5b), T = C′
2, and the set P of Px is

Cvab = {I, σaσb}. The existence of this general decomposition follows in that there is
a subgroup Gfix of G which moves no labels between units, and this group Gfix itself
has a maximal subgroup G0 = ∏units

c Gc which is expressible as a simple product of
groups Gc acting on each unit C independently. Indeed this subgroup Gfix must be
normal, and there is a set {Px } of coset multipliers for G0 in Gfix. Then evidently T
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is the factor group of Gfix in G. A special case of all this occurs when P is just the
identity, and the result is what is called a “wreath” product, such as have been dealt
with before (see footnote 1) [9] in the context of Pólya enumeration theory.

The point of this decomposition (of the symmetry group) is that it provides a neat
means by which to treat the cycle index of G, as

Z(G) =
∈T∑
T

∑
x

T −cycles∏
γ

Z(GC(γ ) PxC(γ ) · Tγ ) (10)

where the product is over the different disjoint cycles (of unit labels) occurring in T
with C(γ ) a representative unit in the cycle. Notably

Z(GC(γ ) PxC(γ )) = 1

|GC(γ )|
∈GC(γ )∑

P

N∏
l=1

s|P|l
l (11)

which clearly is something which depends on just a single unit. And rather similarly,
if such a disjoint cycle γ of T is of length m (involving m units), then very similarly
we have

Z(GC(γ ) PxC(γ ) · TC(γ )) = 1

|Gc(γ )|
∈GC(γ )∑

P

N∏
l=1

s|P|l
lm (12)

where the dependence on TC(γ ) comes in very simply. In fact, every such possible
component single-unit Z is rather much like what we already have encountered in our
exemplar dicarborane case. Every case with a unit attached to another is exactly as
given in eqn (2), while for a degree-2 unit (attached to 2 other units) the possible forms
are similar to those in eqn. (2) except with one factor of s1 is missing (as these units
have just 10 possible substitutional positions), and for a degree-3 unit, another factor
of s1 is missing.

Thence rather general polycarborane substitutional isomers can be handled, in a rel-
atively nice manner. Yet also these constructions lend themselves to the construction
of a polynomial to enumerate “unit-subcounts” of isomers, having different numbers
of substituents in different units—basically one just needs to introduce a counting
variable tC for each carborane unit c.

6 Conclusion

It is seen that Pólya counting theory is readily applicable to deal with the enumeration
of different sorts of isomers (stereomers, diastereomers, and structomers). Modest
elaborations of this theory facilitate the readiness of computations on such multiunit
structures—when the overall symmetry is viewed as a product of the local symmetry
of the individual sub-units (here carboranes) and the global symmetry involving the
interchange of the different subunits. Yet further modest extensions enable different
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sorts of sub-counts of isomers. This then adds to the list of further properties which can
be obtained via Pólya-theoretic generating functions—there having been a fair number
of interesting graphical properties [12,13] dealt with previously via Pólya-theoretic
methods for the case of different sorts of acyclic hydrocarbons—indeed with sufficient
graphical properties to represent different chemico-physical properties in a standard
(group-function-theoretic [14,15]) fashion. Some graph-theoretic quantities (such as
various combinatorially defined “twists”, “curvatures”, or “torsions”) may even relate
to geometric structure, so that information on such might also be gained by way of
graphical combinatorics. It might also be mentioned that substitutional isomers can
further be fit into a substitution-reaction poset [16] which then may be utilized [17] in
organizing or fitting properties of the species within the poset. Evidently there is an
increasing degree of promise of further insight from such combinatorial mathematical
approaches.
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