Enumeration of polycarborane isomers: especially dicarboranes

Vladimir R. Rosenfeld • Douglas J. Klein • Josep M. Oliva

Received: 17 March 2012 / Accepted: 5 April 2012 / Published online: 26 April 2012
© Springer Science+Business Media, LLC 2012

Abstract

Various sorts of isomer enumeration problems are addressed in the context of polycarboranes, with special illustrative focus on the case of dicarboranes, for which then various numerical results are given. A systematic and general Pólya-theoretic methodology is used to make the computations, including some new techniques being applicable to a wide range of nano-structures built from a framework of like local subunits.

Keywords Isomer enumerations • Structural isomers • Stereoisomers • Dicarborane isomers • Polycarboranes

1 Prelude

Carboranes and more general polycarboranes are of interest [1-4] as fundamental nano-structures for use in the construction of various nano-devices. The carborane unit is especially attractive as a fairly well understood building block such that each icosahedral carborane unit offers a multiplicity of bonding directrixes for potential neighboring carborane units-so that thereby a wide variety of nano-structures are possible. But also given a nano-structure one might be interested in the variety of

[^0]possible patterns of substitution on it, say so as to "tune" the properties of the underlying structures. Enumerations and further global characterizations of such different patterns of substitution then form the general problems here addressed.

For a concrete illustration consider two carboranes $\left[\mathrm{C}_{c} \mathrm{~B}_{12-c} \mathrm{H}_{12}\right]^{c-2}$ in the shape of icosahedra where there are $c=1$ or 2 carbon atoms. Then one H atom bonded to a C atom may be deleted from each of these two icosahedra, whereafter the two radicals are joined together to obtain a bridged dicarborane species

$$
\left[\left(\mathrm{C}_{a} \mathrm{~B}_{12-a} \mathrm{H}_{11}\right)-\left(\mathrm{C}_{b} \mathrm{~B}_{12-b} \mathrm{H}_{11}\right)\right]^{a+b-4}
$$

when a or $b=2$, then the second carbon atom in the carborane can be connected ortho, meta, or para to the bridge connection. Figure 1 shows a borane dimer, with $a=b=1$; there positions 2,11 , and 12 are ortho, meta, and para to position 1 (in either of the borane units). One can now seek isomer counts for substitution of H atoms by X, where X might for instance represent F or CH_{3}. We presume that rotation about the central bridge bond is allowed. This does not necessarily assume that internal rotation is free, but rather that it takes place on a sufficiently short time scale. But still there are different possible types of isomers to consider: structomers, diastereomers, and stereomers. Each type of isomer is distinguished by suitable features. The structomers entail just the characterization of the isomers in terms of the parent skeletal graph-here involving bonds between the neighbor vertices in each of the molecular icosahedra, as well as the bridge bond (or edge), and perhaps the bonds from each X to the corresponding B or C atom of the icosahedra-these structomers are more often called "stuctural isomers" or "constitutional isomers".

Here just such isomer counts of a few types are made, by way of Pólya's theory [5-8] of enumeration under group action, using the so-called "cycle index". This is used to enumerate different types of isomers (structural isomers, diastereomers, and stereoisomers). And as is prototypical here, when the symmetry group of the underlying skeleton (on which substitutions are made) is comprised from a local part leaving units fixed (here carborane units) times a global part interchanging different units, a general theory is here formulated to facilitate the requisite constructions. This then

Fig. 1 Borane dimer, showing just the half of the dimer closer to the viewer. Carbon atoms sit preferentially at the bridge positions 1
extends some earlier ${ }^{1}[9,10]$ similar theory for the special subcase when this symmetry group turns out to be a "wreath product". This yields what might be termed different types of isomer "sub-counts".

2 Isomer characterization

For the $a=b=1$ case, the permutation symmetry groups associated with each of these types of isomers (structomer, diastereomer, or stereomer) may be explicitly identified. We label the two different component icosahedra $\left[\mathrm{CB}_{11} \mathrm{H}_{12}\right]^{-}$of the dicarborane by a and b , and also identify separate permutation groups associated to corresponding icosahedra by these subscripts a and b. Thus we have fivefold rotation groups for each icosahedron $\mathrm{C}_{5 a}$ and $\mathrm{C}_{5 b}$. But also (for $a=b$) there are local reflection groups $\mathrm{C}_{v a} \equiv\left\{I, \sigma_{a}\right\}$ and $\mathrm{C}_{v b} \equiv\left\{I, \sigma_{b}\right\}$ involving a reflections σ_{a} and σ_{b}, reflecting in a plane through a bridge atom and the atom opposite (i.e., para to it) in the single icosahedron a or b. In addition, there is twofold rotation group C_{2}^{\prime} interchanging polyhedra, and there is $\mathrm{C}_{v a b} \equiv\left\{I, \sigma_{a} \sigma_{b}\right\}$ which involves the simultaneous reflection of both polyhedra (but does not include the reflection of one without the reflection of the other). Then the groups associated to each type of isomer count are:

- stereomer: $\left(\mathrm{C}_{5 a} \mathrm{C}_{5 b}\right) \mathrm{C}_{2}^{\prime}$
- diastereomer: $\left(\mathrm{C}_{5 a} \mathrm{C}_{5 b}\right) \mathrm{C}_{v a b} \mathrm{C}_{2}^{\prime}$
- structomer: $\left(\mathrm{C}_{5 v a} \mathrm{C}_{5 v b}\right) \mathrm{C}_{2}^{\prime}$ (where $\mathrm{C}_{5 v}=\mathrm{C}_{5} \mathrm{C}_{v}$)

That is, two conformations are to be counted as equivalent under the group corresponding to the given type of isomer-and the enumerations for a given number n of substituents X are just for the number of equivalence classes for all the $\binom{22}{n}$ different possible conformations. With these various groups represented in terms of permutations on the possible substitution sites, the isomer enumeration is conveniently carried out via Pólya's theory [5-8]—using so called "cycle indices".

For the case of $a=b=2$ where the second C in each icosahedron is placed para to the bridge C atom, the groups are designated in the same manner. The isomer counts then are the same as those resulting for the $a=b=1$ case.

For the case $a=1$ and $b=2$ with the second C in the second icosahedron in the para position, the groups are only slightly modified, just with the C_{2}^{\prime} factor missing from each of these groups.

The remaining cases involve at least one icosahedron with a C atom off of what otherwise would be a fivefold axis. That is, for these cases there is an icosahedron cage with a C -atom either ortho or meta to a bridge C atom. If there is just one such off-center C atom, say the b icosahedron, then the groups are:

- stereomer: $\mathrm{C}_{5 a}$
- diastereomer: $\left(\mathrm{C}_{5 a}\right) \mathrm{C}_{v a b}$
- structomer: $\mathrm{C}_{5 v a} \mathrm{C}_{v b}$

[^1]If $a=b=2$ and both icosahedra have both icosahedra with off-axis C atoms, there is a possibility that both are the same type (both o, or both m), in which case the relevant groups are:

- stereomer: C_{2}^{\prime}
- diastereomer: $\mathrm{C}_{2}^{\prime} \mathrm{C}_{v a b}$
- structomer: $\mathrm{C}_{v a} \mathrm{C}_{v b} \mathrm{C}_{2}^{\prime}$

But (still with $m=n=2$) if they are different types (ortho and meta), then

- stereomer: $\{I\}$
- diastereomer: $\mathrm{C}_{v a b}$
- structomer: $\mathrm{C}_{v a} \mathrm{C}_{v b}$

Again in all these cases the Pólya theory is applicable.

3 Methodology for counting isomers

To solve any one of these isomer counting problems one needs the so-called "cycle index" for the relevant group G of permutations. In general a permutation P on a set of N labels (here identifying the substitution sits) is a product of a number $|P|_{l}$ of disjoint cycles of different lengths $l=1$ up to N. Evidently then $\sum_{c=1}^{N}|P|_{c}=N$, and for each $P \in \mathrm{G}$ we further introduce products $\prod_{l=1}^{N} s_{l}^{|P|_{l}}$ with the s_{l} being variables, and we might even further let χ^{λ} denote some character of G . Then the χ^{λ} - cycle index for a subset $S \subseteq G$ is

$$
\begin{equation*}
Z_{\lambda}(\mathrm{S}) \equiv \frac{1}{|\mathrm{~S}|} \sum_{P}^{\in \mathrm{S}} \chi^{\lambda}(P) \cdot \prod_{l=1}^{N} s_{l}^{|P|_{l}} \tag{1}
\end{equation*}
$$

when $\mathrm{S}=\mathrm{G}$ (and perhaps χ^{λ} is irreducible), this reduces to Balasubramanian's χ^{λ} cycle index [11], and if further χ^{λ} is taken to be the identity irreducible representation, then this further specializes to Pólya's $[5,6]$ standard cycle index, which then is simply denoted $Z(\mathrm{G})$. Pólya's theorem then says that if one takes $s_{l} \equiv 1+x^{l}, Z(\mathrm{G})$ becomes a polynomial (in x) for which the coefficient of x^{n} is the number of n-fold substituted isomers (for our single substituent X beyond H) as mediated by the group G .

In the case of polycarboranes the whole group G can be built up from pieces associated with the component icosahedral units, just a and b for dicarboranes. In particular we utilize

$$
\begin{align*}
Z\left(\mathrm{C}_{5}\right) & =\frac{1}{5}\left\{s_{1}^{11}+4 s_{1} s_{5}^{2}\right\} \\
Z\left(\mathrm{C}_{5} \sigma\right) & =\frac{1}{5}\left\{5 s_{1}^{3} s_{2}^{4}\right\}=s_{1}^{3} s_{2}^{4} \tag{2}\\
Z(\sigma) & =s_{1}^{3} s_{2}^{4}
\end{align*}
$$

The utilization of these simple single-unit cycle indices to determine the desired cycle indices for various multi-unit species is described in a later section.

Numerical results for the $\left[\mathrm{CB}_{11} \mathrm{H}_{11}\right]_{2}^{2-}$ dicarborane case are given in Table 1 showing the results for each of the 3 types of isomers contemplated, as well as the counts of diastereomers which correspond either to enantiomeric pairs or individual achiral structures. In Table 2 just the structomer counts for the remaining types of dicarboranes are given, with o, m, p labelling ortho, meta, and para units (with $c=2$ carbons), while \varnothing labels units with just a single C atom (at the bridgehead). These tables report results just for $n=0 \rightarrow 11$ substituents (all of the same kind X), as it is understood that the isomer counts at n and $22-n$ are the same (as is evident upon interchange of H and X).

4 Further enumerative characterization

In addition one may consider the respective numbers α and χ of achiral and chiral diastereomers. Given the numbers $\#_{\text {ster }}$ and $\#_{\text {diast }}$ of stereomer and diastereomer counts (at a given n), we have

Table 1 Isomer counts for $\left(\mathrm{C}_{5 v a} \mathrm{C}_{5 v b}\right) \mathrm{C}_{2}^{\prime}$-symmetric skeletons $\varnothing-\varnothing$ or $p-p$

n	$\varnothing-\varnothing$ and $p-p$	$\varnothing-p$	$\varnothing-o$ and $\varnothing-m$	$m-m$ and $o-o$	$o-m$
0	1	1	1	1	1
1	3	6	10	7	14
2	15	27	61	59	111
3	50	100	268	306	612
4	156	303	923	1,293	2,555
5	391	782	2,630	4,219	8,438
6	886	1,749	6,347	11,335	22,581
7	1,704	3,408	13,064	24,856	49,712
8	2,908	5,774	22,940	45,572	90,970
9	4,226	8,452	34,320	69,694	139,388
10	5,350	10,642	47,312	89,980	179,718
11	5,748	11,496	47,384	97,772	195,544
12	5,350	10,642	43,712	89,980	179,718
13	4,226	8,452	34,320	69,694	139,388
14	2,908	5,774	22,940	45,572	90,970
15	1,704	3,408	13,064	24,856	49,712
16	886	1,749	6,347	11,335	22,581
17	391	782	2,630	4,219	8,438
18	156	303	923	1,293	2,555
19	50	100	268	306	612
20	15	27	6	1	59

Table 2 Structomer counts for various types of dicarboranes

n	$\#_{\text {ster }}$	\# ${ }_{\text {diast }}$	\#struc	χ	α	χ^{\prime}	α^{\prime}
0	1	1	1	0	1	0	1
1	3	3	3	0	3	0	3
2	17	15	15	2	13	0	15
3	66	50	50	16	34	0	50
4	231	158	156	73	85	2	154
5	655	411	391	244	167	20	371
6	1,663	984	886	679	305	98	788
7	3,560	2,016	1,704	1,544	472	312	1,392
8	6,578	3,628	2,908	2,950	678	720	2,188
9	10,142	5,498	4,226	4,644	854	1,272	2,954
10	13,246	7,122	5,350	6,124	998	1,772	3,578
11	14,412	7,724	5,748	6,688	1,036	1,976	3,772
12	13,246	7,122	5,350	6,124	998	1,772	3,578
13	10,142	5,498	4,226	4,644	854	1,272	2,954
14	6,578	3,628	2,908	2,950	678	720	2,188
15	3,560	2,016	1,704	1,544	472	312	1,392
16	1,663	984	886	679	305	98	788
17	655	411	391	244	167	20	371
18	231	158	156	73	85	2	154
19	66	50	50	16	34	0	50
20	17	15	15	2	13	0	15
21	3	3	3	0	3	0	3
22	1	1	1	0	1	0	1
Sum	86,736	47,496	37,128	39,240	8,256	10,368	26,760

$$
\begin{equation*}
\#_{\text {ster }}=\alpha+2 \chi \quad \text { and } \quad \#_{\text {diast }}=\alpha+\chi \tag{3}
\end{equation*}
$$

(as each member of an enantiomeric pair is counted but once for a diastereomer). Thus

$$
\begin{equation*}
\alpha=2 \#_{\text {diast }}-\#_{\text {ster }} \quad \text { and } \quad \chi=\#_{\text {ster }}-\#_{\text {diast }} \tag{4}
\end{equation*}
$$

We recall that scalar properties (boiling and melting points, heats of formation and vaporization, densities, specific heats, magnetic susceptibilities, polarizabilities, solubilities in achiral solvents, etc) are the same for the two members of an enantiomeric pair of stereomers, so that $\#_{\text {diast }}$ counts the number of different sets of scalar properties achievable either for different pure stereomers or for the different racemates (as so often arise with asymmetric syntheses) -though the racemates have many scalar properties different than the corresponding pure stereomers.

It is readily seen that these results may be re-expressed in terms of our generalized cycle indexes. We denote the stereomer group by $\mathrm{G}_{\text {stereo }}$ and the diastereomer group by $\mathrm{G}_{\text {diast }}=\mathrm{G}_{\text {stereo }} \oplus \sigma_{a b} \mathrm{G}_{\text {stereo }}$, where $\sigma_{a b}$ is our overall reflection. Also we let
$\lambda=$ anti denote the antisymmetric irreducible representation which has character $=+1$ on $\mathbf{G}_{\text {stereo }}$ and $=-1$ on the coset $\sigma_{a b} \mathrm{G}_{\text {stereo }}$. Then $Z_{\text {anti }}\left(\mathrm{G}_{\text {diast }}\right)$ is the counting polynomial for enantiomeric pairs, and $Z\left(\sigma_{a b} \mathrm{G}_{\text {stereo }}\right)$ is the counting polynomial for achiral species.

A similar consideration may be made for the relation between structomers and diastereomers. That is, if we imagine that a scalar property depends purely on the graphical structure of a molecule, then (for our dicarboranes) there will be pairs of diastereomers having the same values for such scalar properties-and each such pair will be grouped together in a single structomer. Various gas phase scalar properties might reasonably be imagined to closely manifest such a diastereomeric independence, but in condensed phases the scalar properties should depend some on the geometric characteristics so as to distinguish diastereomers corresponding to the same structomer. We might denote the number of such pairs as χ^{\prime} and the number of structomers corresponding to a single diastereomer by α^{\prime}. Then (for our dicarboranes)

$$
\begin{equation*}
\#_{\text {diast }}=\alpha^{\prime}+2 \chi^{\prime} \quad \text { and } \quad \#_{\text {struc }}=\alpha^{\prime}+\chi^{\prime} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha^{\prime}=2 \#_{\text {diast }}-\#_{\text {ster }} \quad \text { and } \quad \chi^{\prime}=\#_{\text {ster }}-\#_{\text {diast }} \tag{6}
\end{equation*}
$$

which in close correspondence with the relations between stereomers and diastereomers. It may be noted that with polycarboranes with ≥ 3 carborane units, one structomer may correspond to a greater number of diastereomers. Again generating polynomials $Z_{\text {anti }}\left(\mathrm{G}_{\text {struct }}\right)$ and $Z\left(\sigma_{a} \mathrm{G}_{\text {diast }}\right)$ apply for χ^{\prime} - and α^{\prime}-counting.

Results for the $a=b=1$ dicarborane (and also the $a=b=2$ para-para carborane) are given in Table 1. Similar results are readily obtainable for all the other cases of Table 2.

Another type of isomer sub-count entails the enumeration of the numbers of isomers which have particular numbers of substituents X in each of the different carborane units. For the illustrative dicarborane case we thus seek isomer counts $\#_{m, n}$ with m and n substituents in each carborane unit. There of course is a problem as to whether the two units are of the same type (o, m, p, or \varnothing). But again all this is treatable via a modest extension of the standard Pólya theory, as explained in the next section. Example numerical results are given in Table 3 for the $a=b=1$ (or $\varnothing-\varnothing$ case).

Finally the Pólya theory (and associated cycle indices) apply even if there are more than one substituent to replace H . One merely introduces a variable t_{X} for each type of substituent X, and takes $s_{m}=1+\sum_{X} t_{X}^{m}$, whence the overall coefficient of $\prod_{X} t_{X}^{m_{X}}$ in Z gives the number of isomers with m_{X} substituents of type X. That is, this just entails further manipulation of a now more elaborate multi-variable polynomial. A super-count $\#_{\text {total }}\left(m_{\mathrm{sub}}\right)$ of all these isomers with any number of substitutions with $m_{\text {sub }}$ possible types of substituents taking place is readily obtainable on taking all these $t_{X}=1$. For instance, for the diastereomeric case, these net numbers of isomers are:

$$
\begin{equation*}
\#_{\text {total }}\left(m_{\text {sub }}\right) \approx 3.7 \times 10^{4}, 1.77 \times 10^{8}, 9.1 \times 10^{10}, 1.21 \times 10^{13} \tag{7}
\end{equation*}
$$

Table 3 Structomer unit subcounts for dicarborane skeletons $\varnothing-\varnothing$ or $p-p$

$\mathrm{m} \backslash \mathrm{n}$	0	1	2	3	4	5	6	7	8	9	10
0	1										
1	3	6									
2	11	33	66								
3	33	99	363	561							
4	66	198	726	2,178	2,211						
5	94	282	1,034	3,102	6,204	4,465					
6	94	282	1,034	3,102	6,204	8,836	4,465				
7	66	198	726	2,178	4,356	6,204	6,204	2,211			
8	33	99	363	1,089	2,178	3,102	3,102	2,178	561		
9	11	33	121	363	726	1,034	1,034	726	363	66	
10	3	9	33	99	198	282	282	198	99	33	6
11	1	3	11	33	66	94	94	66	33	11	3
Sum	416	1,242	4,477	12,705	22,143	24,017	15,181	5,379	1,056	110	9

for $\#_{\text {total }}\left(m_{\text {sub }}\right)=2,3,4,5$. With many different types of substituents, one naturally anticipates that the remnant symmetry of the substituted species more typically is naught but the identity group. Were this to be the case then $\#_{\text {total }}\left(m_{\text {sub }}\right)$ should approach $\left(m_{\text {sub }}+1\right)^{22} /|\mathrm{G}|$, again as we expect for larger values of $m_{\text {subs }}$. Indeed for the present diastereomer case (with $G=G_{\text {diast }}$ of order 200), we have

$$
\begin{equation*}
\left(m_{\text {sub }}+1\right)^{22} /\left|\mathrm{G}_{\text {diast }}\right| \approx 2.1 \times 10^{4}, 1.57 \times 10^{8}, 8.0 \times 10^{10}, 1.19 \times 10^{13} \tag{8}
\end{equation*}
$$

Evidently one need not go to overly large $m_{\text {subs }}$ to obtain a couple digits of accuracy. The analogous expression $\binom{22}{n} \cdot m_{\text {subs }}^{n}$ which one might imagine when the total number of substituents beyond H is just n cannot of course be expected to work well when n is small.

5 Methodology for general polycarboranes

Much as the counts for our dicarboranes could be built up in terms of each component icosahedral group, there are rather similar ideas applicable to the polycarborane case. That is, it might be imagined that we have a whole sequence of carborane units, which fall into classes γ which have the bonds to other carborane groups in similar positions. That is, if a carborane unit is removed from the whole nano-structure while marking the atoms where the bridge bonds to other units occur, then the members of this class are to be isomorphic. Evidently whatever molecular permutation group we have to designate our isomers can only interchange site labels between carborane units belonging to the same class, allowing that there can be component permutations which permute the labels around within individual units. Then one can generally present our isomer group in the form

$$
\begin{equation*}
\mathrm{G}=\left(\cup_{x} \mathrm{G}_{0} P_{x}\right) \cdot \mathrm{T} \tag{9}
\end{equation*}
$$

where: G_{0} is a product over groups each of which permutes labels within an individual unit; the union is disjoint; the P_{x} permute the labels within units but generally in a correlated way; the parenthetic part forms a group (leaving indices within carborane units); and T is a group based on the interchanges of the different units. When the set of P_{x} form a group P (as often occurs here), G is [7] the "semi-direct product" of $\mathrm{G}_{0} \mathrm{P}$ and T , or of G_{0} and PT -and yet further $\mathrm{G}_{0} \mathrm{P}$ is the semi-direct product of G_{0} and P. But for our purposes it is of value to keep separate account of G_{0} and P (and T) as they each manifest different sorts of actions on our set of substitution sites. As an example for the $a=b=1$ dicarborane case of diastereomers: $\mathrm{G}=\left(\mathrm{C}_{5 a} \mathrm{C}_{5 b}\right) \mathrm{C}_{v a b} \mathrm{C}_{2}^{\prime}, \mathrm{G}_{0}=\left(\mathrm{C}_{5 a} \mathrm{C}_{5 b}\right), \mathrm{T}=\mathrm{C}_{2}^{\prime}$, and the set P of P_{x} is $\mathrm{C}_{v a b}=\left\{I, \sigma_{a} \sigma_{b}\right\}$. The existence of this general decomposition follows in that there is a subgroup $G_{\text {fix }}$ of G which moves no labels between units, and this group $G_{\text {fix }}$ itself has a maximal subgroup $G_{0}=\prod_{c}^{\text {units }} G_{c}$ which is expressible as a simple product of groups G_{c} acting on each unit C independently. Indeed this subgroup $G_{\text {fix }}$ must be normal, and there is a set $\left\{P_{x}\right\}$ of coset multipliers for G_{0} in $\mathrm{G}_{\mathrm{fix}}$. Then evidently T
is the factor group of $G_{\text {fix }}$ in G. A special case of all this occurs when P is just the identity, and the result is what is called a "wreath" product, such as have been dealt with before (see footnote 1) [9] in the context of Pólya enumeration theory.

The point of this decomposition (of the symmetry group) is that it provides a neat means by which to treat the cycle index of G, as

$$
\begin{equation*}
Z(\mathrm{G})=\sum_{T}^{\in \mathrm{T}} \sum_{x} \prod_{\gamma}^{T-\text { cycles }} Z\left(\mathrm{G}_{\mathrm{C}(\gamma)} P_{x \mathrm{C}(\gamma)} \cdot T_{\gamma}\right) \tag{10}
\end{equation*}
$$

where the product is over the different disjoint cycles (of unit labels) occurring in T with $\mathbf{C}(\gamma)$ a representative unit in the cycle. Notably

$$
\begin{equation*}
Z\left(\mathrm{G}_{\mathrm{C}(\gamma)} P_{x \mathrm{C}(\gamma)}\right)=\frac{1}{\left|\mathrm{G}_{C(\gamma)}\right|} \sum_{P}^{\in \mathrm{G}_{\mathrm{C}(\gamma)}} \prod_{l=1}^{N} s_{l}^{|P|_{l}} \tag{11}
\end{equation*}
$$

which clearly is something which depends on just a single unit. And rather similarly, if such a disjoint cycle γ of T is of length m (involving m units), then very similarly we have

$$
\begin{equation*}
Z\left(\mathrm{G}_{\mathrm{C}(\gamma)} P_{x \mathrm{C}(\gamma)} \cdot T_{\mathrm{C}(\gamma)}\right)=\frac{1}{\left|\mathrm{G}_{\mathrm{c}(\gamma)}\right|} \sum_{P}^{\in \mathrm{G}_{\mathrm{C}(\gamma)}} \prod_{l=1}^{N} s_{l m}^{|P|_{l}} \tag{12}
\end{equation*}
$$

where the dependence on $T_{\mathrm{C}(\gamma)}$ comes in very simply. In fact, every such possible component single-unit Z is rather much like what we already have encountered in our exemplar dicarborane case. Every case with a unit attached to another is exactly as given in eqn (2), while for a degree- 2 unit (attached to 2 other units) the possible forms are similar to those in eqn. (2) except with one factor of s_{1} is missing (as these units have just 10 possible substitutional positions), and for a degree- 3 unit, another factor of s_{1} is missing.

Thence rather general polycarborane substitutional isomers can be handled, in a relatively nice manner. Yet also these constructions lend themselves to the construction of a polynomial to enumerate "unit-subcounts" of isomers, having different numbers of substituents in different units-basically one just needs to introduce a counting variable t_{C} for each carborane unit c .

6 Conclusion

It is seen that Pólya counting theory is readily applicable to deal with the enumeration of different sorts of isomers (stereomers, diastereomers, and structomers). Modest elaborations of this theory facilitate the readiness of computations on such multiunit structures-when the overall symmetry is viewed as a product of the local symmetry of the individual sub-units (here carboranes) and the global symmetry involving the interchange of the different subunits. Yet further modest extensions enable different
sorts of sub-counts of isomers. This then adds to the list of further properties which can be obtained via Pólya-theoretic generating functions-there having been a fair number of interesting graphical properties $[12,13]$ dealt with previously via Pólya-theoretic methods for the case of different sorts of acyclic hydrocarbons-indeed with sufficient graphical properties to represent different chemico-physical properties in a standard (group-function-theoretic $[14,15]$) fashion. Some graph-theoretic quantities (such as various combinatorially defined "twists", "curvatures", or "torsions") may even relate to geometric structure, so that information on such might also be gained by way of graphical combinatorics. It might also be mentioned that substitutional isomers can further be fit into a substitution-reaction poset [16] which then may be utilized [17] in organizing or fitting properties of the species within the poset. Evidently there is an increasing degree of promise of further insight from such combinatorial mathematical approaches.

Acknowledgments DJK and VRR acknowledge support (via grant BD-0894) from the Welch Foundation of Houston, Texas. JMO acknowledges support from European project Consolider-Ingenio 2010, CSD2007-046.

References

1. J. Müller, K. Base, T.F. Magnera, J. Michl, J. Am. Chem. Soc. 114, 9721-9722 (1992)
2. W. Jiang, D.E. Harwell, M.D. Mortimer, C.B. Knobler, M.F. Hawthorne, Inorg. Chem. 35, 43554359 (1996)
3. J.M. Oliva, D.J. Klein, P.V.R. Schleyer, L. Serrano-Andres, Pure \& Appl. Chem. 81, 719-729 (2009)
4. S.N. Yannopoulos, G.D. Zouganelis, S. Nurmohamed, J.R. Smith, N. Bouropoulos, G. Calabrese, D.G. Fatouros, J. Tsibouklis, Nanotechnology 21, 085101 (2010)
5. G. Pólya, Kombinatorische Anzahlbestimmungen fur Gruppen, Graphen und chemische Verbindungen. Acta Math. 68, 145-254 (1937)
6. G. Pólya, R.C. Read, Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds (Springer, New York, 1987)
7. A. Kerber, Applied Finite Group Actions, 2nd Revised and Expanded Edition (Springer, Berlin, 1999); see the Wreath product on pp. 64-65, Theorem 2.2.12
8. F. Harary, E. Palmer, Graphical Enumeration (Academic Press, New York and London, 1973)
9. K. Balasubramanian, A generalized wreath product method for enumeration of stereo and position isomers of polysubstituted organic compounds. Theore. Chim. Acta 51, 37-54 (1979)
10. G. James, A. Kerber, page 160 and formula 4.4 .10 in The Representation Theory of the Symmetric Group, Encyclopedia of of Mathematics, vol. 16, ed. by G.-C. Rota (Addison-Wesley, Reading, 1981)
11. K. Balasubramanian, Chemical group theory techniques and applications. Chem. Rev. 85, 599618 (1985)
12. L. Bytautas, D.J. Klein, Alkane isomer combinatorics: stereostructure enumeration and graph-invariant and molecular-property distributions. J. Chem. Inf. \& Comp. Sci. 39, 803-818 (1999)
13. L. Bytautas, D.J. Klein, T.G. Schmalz, All acyclic hydrocarbons: formula periodic table and property overlap plots via chemical combinatorics. New J. Chem. 24, 329-336 (2000)
14. J.D. Cox, G. Pilcher, Thermochemistry of Organic and Organometallic Compounds (Academic Press, NY, 1970)
15. S.W. Benson, Thermochemical Kinetics (Wiley, NY, 1976)
16. D.J. Klein, L. Bytautas, Directed reaction graphs as posets. Commun. Math. \& Comp. Chem. (MatCh) 42, 261-290 (2000)
17. T. Ivanciuc, O. Ivanciuc, D.J. Klein, Posetic quantitative superstructure/activity relationships (QSSARs) for chlorobenenes. J. Chem. Inf. \& Model. 45, 870-879 (2005)

[^0]: V. R. Rosenfeld • D. J. Klein

 Texas A\&M University, Galveston, TX 77553, USA
 e-mail: rosenfev@tamug.edu
 D. J. Klein
 e-mail: kleind@tamug.edu
 J. M. Oliva (\boxtimes)

 Instituto de Química-Física "Rocasolano", CSIC, Serrano, 119, 28006 Madrid, Spain
 e-mail: J.M.Oliva@iqfr.csic.es

[^1]: ${ }^{1}$ See Part 25 of Pólya in ref. 5, or pages 99, 119-121, 136 of Pólya \& Read in ref. 6, or page 98 ff of Harary \& Palmer in ref. 8 .

